How long, O Bayesian network, will I sample thee? A program analysis perspective on expected sampling times

نویسندگان

  • Kevin Batz
  • Benjamin Lucien Kaminski
  • Joost-Pieter Katoen
  • Christoph Matheja
چکیده

Bayesian networks (BNs) are probabilistic graphical models for describing complex joint probability distributions. The main problem for BNs is inference: Determine the probability of an event given observed evidence. Since exact inference is often infeasible for large BNs, popular approximate inference methods rely on sampling. We study the problem of determining the expected time to obtain a single valid sample from a BN. To this end, we translate the BN together with observations into a probabilistic program. We provide proof rules that yield the exact expected runtime of this program in a fully automated fashion. We implemented our approach and successfully analyzed various real-world BNs taken from the Bayesian network repository.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequential sampling models in computational psychiatry: Bayesian parameter estimation, model selection and classification

Current psychiatric research is in crisis. In this review I will describe the causes of this crisis and highlight recent efforts to overcome current challenges. One particularly promising approach is the emerging field of computational psychiatry. By using methods and insights from computational cognitive neuroscience, computational psychiatry might enable us to move from a symptom-based descri...

متن کامل

Bayesian Sample Size Determination for Joint Modeling of Longitudinal Measurements and Survival Data

A longitudinal study refers to collection of a response variable and possibly some explanatory variables at multiple follow-up times. In many clinical studies with longitudinal measurements, the response variable, for each patient is collected as long as an event of interest, which considered as clinical end point, occurs. Joint modeling of continuous longitudinal measurements and survival time...

متن کامل

A Bayesian Approach to Estimation with Link-tracing Sampling Designs

For inference from link-tracing designs, Frank and Thompson (1998) derived the likelihood function for the graph model. In addition, they provided the likelihood functions considered under the symmetric model and also an asymmetric model. In that paper, they used maximum likelihood estimators to est imate the graph model parameters. Here, we propose a Bayesian approach for the estimation proble...

متن کامل

Bayesian Sample size Determination for Longitudinal Studies with Continuous Response using Marginal Models

Introduction Longitudinal study designs are common in a lot of scientific researches, especially in medical, social and economic sciences. The reason is that longitudinal studies allow researchers to measure changes of each individual over time and often have higher statistical power than cross-sectional studies. Choosing an appropriate sample size is a crucial step in a successful study. A st...

متن کامل

Reliable Designing of Capacitated Logistics Network with Multi Configuration Structure under Disruptions: A Hybrid Heuristic Based Sample Average Approximation Algorithm

We consider the reliable multi configuration capacitated logistics network design problem (RMCLNDP) with system disruptions, concerned with facilities locating, transportation links constructing, and also allocating their limited capacities to the customers in order to satisfy their demands with a minimum expected total cost (including locating costs, link constructing costs, as well as expecte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.10433  شماره 

صفحات  -

تاریخ انتشار 2018